3.6.84 \(\int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx\) [584]

3.6.84.1 Optimal result
3.6.84.2 Mathematica [A] (verified)
3.6.84.3 Rubi [A] (verified)
3.6.84.4 Maple [F]
3.6.84.5 Fricas [F]
3.6.84.6 Sympy [F(-1)]
3.6.84.7 Maxima [F(-2)]
3.6.84.8 Giac [F]
3.6.84.9 Mupad [F(-1)]

3.6.84.1 Optimal result

Integrand size = 35, antiderivative size = 647 \[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=-\frac {22}{9} b^2 d e \sqrt {d+c d x} \sqrt {e-c e x}-\frac {2 a b c d e x \sqrt {d+c d x} \sqrt {e-c e x}}{\sqrt {1-c^2 x^2}}-\frac {2}{27} b^2 d e \sqrt {d+c d x} \sqrt {e-c e x} \left (1-c^2 x^2\right )-\frac {2 b^2 c d e x \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)}{\sqrt {1-c^2 x^2}}-\frac {2 b c d e x \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))}{3 \sqrt {1-c^2 x^2}}+\frac {2 b c^3 d e x^3 \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))}{9 \sqrt {1-c^2 x^2}}+d e \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2+\frac {1}{3} d e \sqrt {d+c d x} \sqrt {e-c e x} \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2-\frac {2 d e \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \text {arctanh}\left (e^{i \arcsin (c x)}\right )}{\sqrt {1-c^2 x^2}}+\frac {2 i b d e \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x)) \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {2 i b d e \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x)) \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {2 b^2 d e \sqrt {d+c d x} \sqrt {e-c e x} \operatorname {PolyLog}\left (3,-e^{i \arcsin (c x)}\right )}{\sqrt {1-c^2 x^2}}+\frac {2 b^2 d e \sqrt {d+c d x} \sqrt {e-c e x} \operatorname {PolyLog}\left (3,e^{i \arcsin (c x)}\right )}{\sqrt {1-c^2 x^2}} \]

output
-22/9*b^2*d*e*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)-2/27*b^2*d*e*(-c^2*x^2+1)*( 
c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)+d*e*(a+b*arcsin(c*x))^2*(c*d*x+d)^(1/2)*(- 
c*e*x+e)^(1/2)+1/3*d*e*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2*(c*d*x+d)^(1/2)*(- 
c*e*x+e)^(1/2)-2*a*b*c*d*e*x*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/(-c^2*x^2+1) 
^(1/2)-2*b^2*c*d*e*x*arcsin(c*x)*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/(-c^2*x^ 
2+1)^(1/2)-2/3*b*c*d*e*x*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2 
)/(-c^2*x^2+1)^(1/2)+2/9*b*c^3*d*e*x^3*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2)*( 
-c*e*x+e)^(1/2)/(-c^2*x^2+1)^(1/2)-2*d*e*(a+b*arcsin(c*x))^2*arctanh(I*c*x 
+(-c^2*x^2+1)^(1/2))*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/(-c^2*x^2+1)^(1/2)+2 
*I*b*d*e*(a+b*arcsin(c*x))*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))*(c*d*x+d)^ 
(1/2)*(-c*e*x+e)^(1/2)/(-c^2*x^2+1)^(1/2)-2*I*b*d*e*(a+b*arcsin(c*x))*poly 
log(2,I*c*x+(-c^2*x^2+1)^(1/2))*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/(-c^2*x^2 
+1)^(1/2)-2*b^2*d*e*polylog(3,-I*c*x-(-c^2*x^2+1)^(1/2))*(c*d*x+d)^(1/2)*( 
-c*e*x+e)^(1/2)/(-c^2*x^2+1)^(1/2)+2*b^2*d*e*polylog(3,I*c*x+(-c^2*x^2+1)^ 
(1/2))*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)/(-c^2*x^2+1)^(1/2)
 
3.6.84.2 Mathematica [A] (verified)

Time = 5.08 (sec) , antiderivative size = 632, normalized size of antiderivative = 0.98 \[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=-\frac {1}{3} a^2 d e \sqrt {d+c d x} \sqrt {e-c e x} \left (-4+c^2 x^2\right )+\frac {2 a b d e \sqrt {d+c d x} \sqrt {e-c e x} \left (-3 c x+c^3 x^3+3 \left (1-c^2 x^2\right )^{3/2} \arcsin (c x)\right )}{9 \sqrt {1-c^2 x^2}}+a^2 d^{3/2} e^{3/2} \log (c x)-a^2 d^{3/2} e^{3/2} \log \left (d e+\sqrt {d} \sqrt {e} \sqrt {d+c d x} \sqrt {e-c e x}\right )-\frac {2 a b d e \sqrt {d+c d x} \sqrt {e-c e x} \left (c x-\sqrt {1-c^2 x^2} \arcsin (c x)-\arcsin (c x) \log \left (1-e^{i \arcsin (c x)}\right )+\arcsin (c x) \log \left (1+e^{i \arcsin (c x)}\right )-i \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )+i \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )\right )}{\sqrt {1-c^2 x^2}}-\frac {b^2 d e \sqrt {d+c d x} \sqrt {e-c e x} \left (2 \sqrt {1-c^2 x^2}+2 c x \arcsin (c x)-\sqrt {1-c^2 x^2} \arcsin (c x)^2-\arcsin (c x)^2 \log \left (1-e^{i \arcsin (c x)}\right )+\arcsin (c x)^2 \log \left (1+e^{i \arcsin (c x)}\right )-2 i \arcsin (c x) \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )+2 i \arcsin (c x) \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )+2 \operatorname {PolyLog}\left (3,-e^{i \arcsin (c x)}\right )-2 \operatorname {PolyLog}\left (3,e^{i \arcsin (c x)}\right )\right )}{\sqrt {1-c^2 x^2}}+\frac {b^2 d e \sqrt {d+c d x} \sqrt {e-c e x} \left (27 \sqrt {1-c^2 x^2} \left (-2+\arcsin (c x)^2\right )+\left (-2+9 \arcsin (c x)^2\right ) \cos (3 \arcsin (c x))-6 \arcsin (c x) (9 c x+\sin (3 \arcsin (c x)))\right )}{108 \sqrt {1-c^2 x^2}} \]

input
Integrate[((d + c*d*x)^(3/2)*(e - c*e*x)^(3/2)*(a + b*ArcSin[c*x])^2)/x,x]
 
output
-1/3*(a^2*d*e*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(-4 + c^2*x^2)) + (2*a*b*d*e 
*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(-3*c*x + c^3*x^3 + 3*(1 - c^2*x^2)^(3/2) 
*ArcSin[c*x]))/(9*Sqrt[1 - c^2*x^2]) + a^2*d^(3/2)*e^(3/2)*Log[c*x] - a^2* 
d^(3/2)*e^(3/2)*Log[d*e + Sqrt[d]*Sqrt[e]*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]] 
 - (2*a*b*d*e*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(c*x - Sqrt[1 - c^2*x^2]*Arc 
Sin[c*x] - ArcSin[c*x]*Log[1 - E^(I*ArcSin[c*x])] + ArcSin[c*x]*Log[1 + E^ 
(I*ArcSin[c*x])] - I*PolyLog[2, -E^(I*ArcSin[c*x])] + I*PolyLog[2, E^(I*Ar 
cSin[c*x])]))/Sqrt[1 - c^2*x^2] - (b^2*d*e*Sqrt[d + c*d*x]*Sqrt[e - c*e*x] 
*(2*Sqrt[1 - c^2*x^2] + 2*c*x*ArcSin[c*x] - Sqrt[1 - c^2*x^2]*ArcSin[c*x]^ 
2 - ArcSin[c*x]^2*Log[1 - E^(I*ArcSin[c*x])] + ArcSin[c*x]^2*Log[1 + E^(I* 
ArcSin[c*x])] - (2*I)*ArcSin[c*x]*PolyLog[2, -E^(I*ArcSin[c*x])] + (2*I)*A 
rcSin[c*x]*PolyLog[2, E^(I*ArcSin[c*x])] + 2*PolyLog[3, -E^(I*ArcSin[c*x]) 
] - 2*PolyLog[3, E^(I*ArcSin[c*x])]))/Sqrt[1 - c^2*x^2] + (b^2*d*e*Sqrt[d 
+ c*d*x]*Sqrt[e - c*e*x]*(27*Sqrt[1 - c^2*x^2]*(-2 + ArcSin[c*x]^2) + (-2 
+ 9*ArcSin[c*x]^2)*Cos[3*ArcSin[c*x]] - 6*ArcSin[c*x]*(9*c*x + Sin[3*ArcSi 
n[c*x]])))/(108*Sqrt[1 - c^2*x^2])
 
3.6.84.3 Rubi [A] (verified)

Time = 1.98 (sec) , antiderivative size = 321, normalized size of antiderivative = 0.50, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {5238, 5202, 5154, 27, 353, 53, 2009, 5198, 2009, 5218, 3042, 4671, 3011, 2720, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c d x+d)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx\)

\(\Big \downarrow \) 5238

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \int \frac {\left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2}{x}dx}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5202

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (-\frac {2}{3} b c \int \left (1-c^2 x^2\right ) (a+b \arcsin (c x))dx+\int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{x}dx+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5154

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{x}dx-\frac {2}{3} b c \left (-b c \int \frac {x \left (3-c^2 x^2\right )}{3 \sqrt {1-c^2 x^2}}dx-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))\right )+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{x}dx-\frac {2}{3} b c \left (-\frac {1}{3} b c \int \frac {x \left (3-c^2 x^2\right )}{\sqrt {1-c^2 x^2}}dx-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))\right )+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{x}dx-\frac {2}{3} b c \left (-\frac {1}{6} b c \int \frac {3-c^2 x^2}{\sqrt {1-c^2 x^2}}dx^2-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))\right )+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 53

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{x}dx-\frac {2}{3} b c \left (-\frac {1}{6} b c \int \left (\sqrt {1-c^2 x^2}+\frac {2}{\sqrt {1-c^2 x^2}}\right )dx^2-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))\right )+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{x}dx+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5198

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {(a+b \arcsin (c x))^2}{x \sqrt {1-c^2 x^2}}dx-2 b c \int (a+b \arcsin (c x))dx+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {(a+b \arcsin (c x))^2}{x \sqrt {1-c^2 x^2}}dx+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5218

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int \frac {(a+b \arcsin (c x))^2}{c x}d\arcsin (c x)+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (\int (a+b \arcsin (c x))^2 \csc (\arcsin (c x))d\arcsin (c x)+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 4671

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (-2 b \int (a+b \arcsin (c x)) \log \left (1-e^{i \arcsin (c x)}\right )d\arcsin (c x)+2 b \int (a+b \arcsin (c x)) \log \left (1+e^{i \arcsin (c x)}\right )d\arcsin (c x)-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))^2+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 3011

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (2 b \left (i \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))-i b \int \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )d\arcsin (c x)\right )-2 b \left (i \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))-i b \int \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )d\arcsin (c x)\right )-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))^2+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2720

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (2 b \left (i \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))-b \int e^{-i \arcsin (c x)} \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}\right )-2 b \left (i \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))-b \int e^{-i \arcsin (c x)} \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}\right )-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))^2+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 7143

\(\displaystyle \frac {d e \sqrt {c d x+d} \sqrt {e-c e x} \left (-2 \text {arctanh}\left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))^2+\frac {1}{3} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))^2+\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-2 b c \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )-\frac {2}{3} b c \left (-\frac {1}{3} c^2 x^3 (a+b \arcsin (c x))+x (a+b \arcsin (c x))-\frac {1}{6} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^2}-\frac {4 \sqrt {1-c^2 x^2}}{c^2}\right )\right )+2 b \left (i \operatorname {PolyLog}\left (2,-e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))-b \operatorname {PolyLog}\left (3,-e^{i \arcsin (c x)}\right )\right )-2 b \left (i \operatorname {PolyLog}\left (2,e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))-b \operatorname {PolyLog}\left (3,e^{i \arcsin (c x)}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

input
Int[((d + c*d*x)^(3/2)*(e - c*e*x)^(3/2)*(a + b*ArcSin[c*x])^2)/x,x]
 
output
(d*e*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x] 
)^2 + ((1 - c^2*x^2)^(3/2)*(a + b*ArcSin[c*x])^2)/3 - 2*b*c*(a*x + (b*Sqrt 
[1 - c^2*x^2])/c + b*x*ArcSin[c*x]) - (2*b*c*(-1/6*(b*c*((-4*Sqrt[1 - c^2* 
x^2])/c^2 - (2*(1 - c^2*x^2)^(3/2))/(3*c^2))) + x*(a + b*ArcSin[c*x]) - (c 
^2*x^3*(a + b*ArcSin[c*x]))/3))/3 - 2*(a + b*ArcSin[c*x])^2*ArcTanh[E^(I*A 
rcSin[c*x])] + 2*b*(I*(a + b*ArcSin[c*x])*PolyLog[2, -E^(I*ArcSin[c*x])] - 
 b*PolyLog[3, -E^(I*ArcSin[c*x])]) - 2*b*(I*(a + b*ArcSin[c*x])*PolyLog[2, 
 E^(I*ArcSin[c*x])] - b*PolyLog[3, E^(I*ArcSin[c*x])])))/Sqrt[1 - c^2*x^2]
 

3.6.84.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 3011
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.) 
*(x_))^(m_.), x_Symbol] :> Simp[(-(f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + 
b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F]))   Int[(f + g*x)^( 
m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e 
, f, g, n}, x] && GtQ[m, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4671
Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[- 
2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*x))]/f), x] + (-Simp[d*(m/f)   Int[(c + 
d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Simp[d*(m/f)   Int[(c + d*x 
)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IG 
tQ[m, 0]
 

rule 5154
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbo 
l] :> With[{u = IntHide[(d + e*x^2)^p, x]}, Simp[(a + b*ArcSin[c*x])   u, x 
] - Simp[b*c   Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; Fr 
eeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
 

rule 5198
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
(e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcS 
in[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt[1 
 - c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x 
] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]]   Int[ 
(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, 
 f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 5202
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcS 
in[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1))   Int[(f*x) 
^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 
2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2 
*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, 
e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 

rule 5218
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)* 
(x_)^2], x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e* 
x^2]]   Subst[Int[(a + b*x)^n*Sin[x]^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a 
, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]
 

rule 5238
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> Simp[((-d^2)*(g/e))^In 
tPart[q]*(d + e*x)^FracPart[q]*((f + g*x)^FracPart[q]/(1 - c^2*x^2)^FracPar 
t[q])   Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n 
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] & 
& EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 
3.6.84.4 Maple [F]

\[\int \frac {\left (c d x +d \right )^{\frac {3}{2}} \left (-c e x +e \right )^{\frac {3}{2}} \left (a +b \arcsin \left (c x \right )\right )^{2}}{x}d x\]

input
int((c*d*x+d)^(3/2)*(-c*e*x+e)^(3/2)*(a+b*arcsin(c*x))^2/x,x)
 
output
int((c*d*x+d)^(3/2)*(-c*e*x+e)^(3/2)*(a+b*arcsin(c*x))^2/x,x)
 
3.6.84.5 Fricas [F]

\[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=\int { \frac {{\left (c d x + d\right )}^{\frac {3}{2}} {\left (-c e x + e\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{x} \,d x } \]

input
integrate((c*d*x+d)^(3/2)*(-c*e*x+e)^(3/2)*(a+b*arcsin(c*x))^2/x,x, algori 
thm="fricas")
 
output
integral(-(a^2*c^2*d*e*x^2 - a^2*d*e + (b^2*c^2*d*e*x^2 - b^2*d*e)*arcsin( 
c*x)^2 + 2*(a*b*c^2*d*e*x^2 - a*b*d*e)*arcsin(c*x))*sqrt(c*d*x + d)*sqrt(- 
c*e*x + e)/x, x)
 
3.6.84.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=\text {Timed out} \]

input
integrate((c*d*x+d)**(3/2)*(-c*e*x+e)**(3/2)*(a+b*asin(c*x))**2/x,x)
 
output
Timed out
 
3.6.84.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*d*x+d)^(3/2)*(-c*e*x+e)^(3/2)*(a+b*arcsin(c*x))^2/x,x, algori 
thm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.6.84.8 Giac [F]

\[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=\int { \frac {{\left (c d x + d\right )}^{\frac {3}{2}} {\left (-c e x + e\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{x} \,d x } \]

input
integrate((c*d*x+d)^(3/2)*(-c*e*x+e)^(3/2)*(a+b*arcsin(c*x))^2/x,x, algori 
thm="giac")
 
output
integrate((c*d*x + d)^(3/2)*(-c*e*x + e)^(3/2)*(b*arcsin(c*x) + a)^2/x, x)
 
3.6.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d+c d x)^{3/2} (e-c e x)^{3/2} (a+b \arcsin (c x))^2}{x} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,{\left (d+c\,d\,x\right )}^{3/2}\,{\left (e-c\,e\,x\right )}^{3/2}}{x} \,d x \]

input
int(((a + b*asin(c*x))^2*(d + c*d*x)^(3/2)*(e - c*e*x)^(3/2))/x,x)
 
output
int(((a + b*asin(c*x))^2*(d + c*d*x)^(3/2)*(e - c*e*x)^(3/2))/x, x)